
event.cwi.nl/lsde2015

Large-Scale Data Engineering

Data warehousing with MapReduce

event.cwi.nl/lsde2015

Today’s agenda

• How we got here: the historical perspective

• MapReduce algorithms for processing relational data

• Evolving roles of relational databases and MapReduce

event.cwi.nl/lsde2015

HISTORY

event.cwi.nl/lsde2015

Database workloads

• OLTP (online transaction processing)

– Typical applications: e-commerce, banking, airline reservations

– User facing: real-time, low latency, highly-concurrent

– Tasks: relatively small set of “standard” transactional queries

– Data access pattern: random reads, updates, writes (involving relatively

small amounts of data)

• OLAP (online analytical processing)

– Typical applications: business intelligence, data mining

– Back-end processing: batch workloads, less concurrency

– Tasks: complex analytical queries, often ad hoc

– Data access pattern: table scans, large amounts of data per query

event.cwi.nl/lsde2015

If one is good, two is better

• Downsides of co-existing OLTP and OLAP workloads

– Poor memory management

– Conflicting data access patterns

– Variable latency

• Solution: separate databases

– User-facing OLTP database for high-volume transactions

– Data warehouse for OLAP workloads

– How do we connect the two?

event.cwi.nl/lsde2015

OLTP/OLAP Architecture

OLTP OLAP

ETL
(Extract, Transform, and Load)

event.cwi.nl/lsde2015

OLTP/OLAP integration

• OLTP database for user-facing transactions

• Extract-Transform-Load (ETL)

– Extract records from source

– Transform: clean data, check integrity, aggregate, etc.

– Load into OLAP database

• OLAP database for data warehousing

event.cwi.nl/lsde2015

Structure of data warehouses

SELECT P.Brand, S.Country,
 SUM(F.Units_Sold)
FROM Fact_Sales F
INNER JOIN Dim_Date D ON F.Date_Id = D.Id
INNER JOIN Dim_Store S ON F.Store_Id = S.Id
INNER JOIN Dim_Product P ON F.Product_Id = P.Id
WHERE D.YEAR = 1997 AND P.Product_Category = 'tv'
GROUP BY P.Brand, S.Country;

Source: Wikipedia (Star Schema)

event.cwi.nl/lsde2015

OLAP cubes

store

p
ro

d
u
c
t

slice and dice

Common operations

roll up/drill down

pivot

event.cwi.nl/lsde2015

OLAP cubes: research challenges

• Fundamentally, lots of group-bys and aggregations

– How to take advantage of schema structure to avoid repeated work?

• Cube materialization

– Realistic to materialize the entire cube?

– If not, how/when/what to materialize?

event.cwi.nl/lsde2015

“On the first day of logging the Facebook clickstream, more than 400 gigabytes of

data was collected. The load, index, and aggregation processes for this data set

really taxed the Oracle data warehouse. Even after significant tuning, we were

unable to aggregate a day of clickstream data in less than 24 hours.”

Jeff Hammerbacher, Information Platforms and the Rise of the Data Scientist.

In, Beautiful Data, O’Reilly, 2009.

event.cwi.nl/lsde2015

RELATIONAL PROCESSING
USING MAPREDUCE

event.cwi.nl/lsde2015

What’s changed?

• Dropping cost of disks

– Cheaper to store everything than to figure out what to throw away

• Types of data collected

– From data that’s obviously valuable to data whose value is less

apparent

• Rise of social media and user-generated content

– Large increase in data volume

• Growing maturity of data mining techniques

– Demonstrates value of data analytics

• Virtuous product growth cycle

event.cwi.nl/lsde2015

ETL bottleneck

• ETL is typically a nightly task:

– What happens if processing 24 hours of data takes longer than 24

hours?

• Hadoop is perfect:

– Ingest is limited by speed of HDFS

– Scales out with more nodes

– Massively parallel

– Ability to use any processing tool

– Much cheaper than parallel databases

– ETL is a batch process anyway!

We need algorithms for ETL processing using MapReduce

event.cwi.nl/lsde2015

Design pattern: secondary sorting

• MapReduce sorts input to reducers by key

– Values are arbitrarily ordered

• What if want to sort value also?

– E.g., k → (v1, r), (v3, r), (v4, r), (v8, r)…

event.cwi.nl/lsde2015

Secondary sorting: solutions

• Solution 1:

– Buffer values in memory, then sort

– Why is this a bad idea?

• Solution 2:

– “Value-to-key conversion” design pattern:

form composite intermediate key, (k, v1)

– Let execution framework do the sorting

– Preserve state across multiple key-value pairs to handle processing

event.cwi.nl/lsde2015

Value-to-key conversion

k → (v1, r), (v4, r), (v8, r), (v3, r)…

(k, v1) → (v1, r)

Before

After

(k, v3) → (v3, r)

(k, v4) → (v4, r)

(k, v8) → (v8, r)

Values arrive in arbitrary order…

…

Values arrive in sorted order…

Process by preserving state across multiple keys

event.cwi.nl/lsde2015

Relational databases

• A relational database is comprised of tables

• Each table represents a relation = collection of tuples (rows)

• Each tuple consists of multiple fields

event.cwi.nl/lsde2015

Working scenario

• Two tables:

– User demographics (gender, age, income, etc.)

– User page visits (URL, time spent, etc.)

• Analyses we might want to perform:

– Statistics on demographic characteristics

– Statistics on page visits

– Statistics on page visits by URL

– Statistics on page visits by demographic characteristic

– …

event.cwi.nl/lsde2015

Relational algebra

• Primitives

– Projection ()

– Selection ()

– Cartesian product ()

– Set union ()

– Set difference ()

– Rename ()

• Other operations

– Join (⋈)

– Group by… aggregation

– …

event.cwi.nl/lsde2015

Projection

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

event.cwi.nl/lsde2015

Projection in MapReduce

• Easy!

– Map over tuples, emit new tuples with appropriate attributes

– No reducers, unless for regrouping or resorting tuples

– Alternatively: perform in reducer, after some other processing

• Basically limited by HDFS streaming speeds

– Speed of encoding/decoding tuples becomes important

– Take advantage of compression when available

– Semistructured data? No problem!

event.cwi.nl/lsde2015

Selection

R1

R2

R3

R4

R5

R1

R3

event.cwi.nl/lsde2015

Selection in MapReduce

• Easy!

– Map over tuples, emit only tuples that meet criteria

– No reducers, unless for regrouping or resorting tuples

– Alternatively: perform in reducer, after some other processing

• Basically limited by HDFS streaming speeds

– Speed of encoding/decoding tuples becomes important

– Take advantage of compression when available

– Semistructured data? No problem!

event.cwi.nl/lsde2015

Group by and aggregation

• Example: What is the average time spent per URL?

• In SQL:

– SELECT url, AVG(time) FROM visits GROUP BY url

• In MapReduce:

– Map over tuples, emit time, keyed by url

– Framework automatically groups values by keys

– Compute average in reducer

– Optimize with combiners

event.cwi.nl/lsde2015

Types of join relationships

One-to-One One-to-Many Many-to-Many

event.cwi.nl/lsde2015

Join algorithms in MapReduce

• Reduce-side join

• Map-side join

• In-memory join

– Striped variant

– Memcached variant

event.cwi.nl/lsde2015

Reduce-side join

• Basic idea: group by join key

– Map over both sets of tuples

– Emit tuple as value with join key as the intermediate key

– Execution framework brings together tuples sharing the same key

– Perform actual join in reducer

– Similar to a “sort-merge join” in database terminology

• Two variants

– 1-to-1 joins

– 1-to-many and many-to-many joins

event.cwi.nl/lsde2015

Reduce-side join: 1-to-1

R1

R4

S2

S3

R1

R4

S2

S3

keys values

Map

R1

R4

S2

S3

keys values

Reduce

Note: no guarantee if R is going to come first or S

event.cwi.nl/lsde2015

Reduce-side join: 1-to-many

R1

S2

S3

R1

S2

S3

S9

keys values

Map

R1 S2

keys values

Reduce

S9

S3 …

event.cwi.nl/lsde2015

Reduce-side join: value-to-key conversion

R1

keys values

In reducer…

S2

S3

S9

R4

S3

S7

New key encountered: hold in memory

Cross with records from other set

New key encountered: hold in memory

Cross with records from other set

event.cwi.nl/lsde2015

Map-side join

• Basic idea: load one dataset into memory, stream over other dataset

– Works if R << S and R fits into memory

– Called a “hash join” in database terminology

• MapReduce implementation

– Distribute R to all nodes

– Map over S, each mapper loads R in memory, hashed by join key

– For every tuple in S, look up join key in R

– No reducers, unless for regrouping or resorting tuples

event.cwi.nl/lsde2015

Map-side join: variants

• Striped variant:

– R too big to fit into memory?

– Divide R into R1, R2, R3, … such that each Rn fits into memory

– Perform in-memory join: n, Rn ⋈ S

– Take the union of all join results

• Memcached join:

– Load R into memcached

– Replace in-memory hash lookup with memcached lookup

event.cwi.nl/lsde2015

Processing relational data: summary

• MapReduce algorithms for processing relational data:

– Group by, sorting, partitioning are handled automatically by shuffle/sort

in MapReduce

– Selection, projection, and other computations (e.g., aggregation), are

performed either in mapper or reducer

– Multiple strategies for relational joins

• Complex operations require multiple MapReduce jobs

– Example: top ten URLs in terms of average time spent

– Opportunities for automatic optimization

event.cwi.nl/lsde2015

HIGH-LEVEL WORKFLOWS

event.cwi.nl/lsde2015

Need for high-level languages

• Hadoop is great for large-data processing!

– But writing Java programs for everything is verbose and slow

– Data scientists don’t want to write Java

• Solution: develop higher-level data processing languages

– Hive: HQL is like SQL

– Pig: Pig Latin is a bit like Perl

event.cwi.nl/lsde2015

Hive and Pig

• Hive: data warehousing application in Hadoop

– Query language is HQL, variant of SQL

– Tables stored on HDFS with different encodings

– Developed by Facebook, now open source

• Pig: large-scale data processing system

– Scripts are written in Pig Latin, a dataflow language

– Programmer focuses on data transformations

– Developed by Yahoo!, now open source

• Common idea:

– Provide higher-level language to facilitate large-data processing

– Higher-level language “compiles down” to Hadoop jobs

event.cwi.nl/lsde2015

Hive: example

• Hive looks similar to an SQL database

• Relational join on two tables:

– Table of word counts from Shakespeare collection

– Table of word counts from the bible

Source: Material drawn from Cloudera training VM

SELECT s.word, s.freq, k.freq FROM shakespeare s
 JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
 ORDER BY s.freq DESC LIMIT 10;

the 25848 62394
I 23031 8854
and 19671 38985
to 18038 13526
of 16700 34654
a 14170 8057
you 12702 2720
my 11297 4135
in 10797 12445
is 8882 6884

event.cwi.nl/lsde2015

Hive: behind the scenes

SELECT s.word, s.freq, k.freq FROM shakespeare s
 JOIN bible k ON (s.word = k.word) WHERE s.freq >= 1 AND k.freq >= 1
 ORDER BY s.freq DESC LIMIT 10;

(TOK_QUERY (TOK_FROM (TOK_JOIN (TOK_TABREF shakespeare s) (TOK_TABREF bible k) (= (. (TOK_TABLE_OR_COL
s) word) (. (TOK_TABLE_OR_COL k) word)))) (TOK_INSERT (TOK_DESTINATION (TOK_DIR TOK_TMP_FILE))
(TOK_SELECT (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) word)) (TOK_SELEXPR (. (TOK_TABLE_OR_COL s) freq))
(TOK_SELEXPR (. (TOK_TABLE_OR_COL k) freq))) (TOK_WHERE (AND (>= (. (TOK_TABLE_OR_COL s) freq) 1) (>=
(. (TOK_TABLE_OR_COL k) freq) 1))) (TOK_ORDERBY (TOK_TABSORTCOLNAMEDESC (. (TOK_TABLE_OR_COL s) freq)))
(TOK_LIMIT 10)))

one or more of MapReduce jobs

abstract syntax tree

event.cwi.nl/lsde2015

Pig: example

User Url Time

Amy cnn.com 8:00

Amy bbc.com 10:00

Amy flickr.com 10:05

Fred cnn.com 12:00

Url Category PageRank

cnn.com News 0.9

bbc.com News 0.8

flickr.com Photos 0.7

espn.com Sports 0.9

Visits Url Info

Task: Find the top 10 most visited pages in each category

Pig Slides adapted from Olston et al. (SIGMOD 2008)

event.cwi.nl/lsde2015

Pig query plan

Load Visits

Group by url

Foreach url
generate count

Load Url Info

Join on url

Group by category

Foreach category
generate top10(urls)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

event.cwi.nl/lsde2015

Pig script

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

event.cwi.nl/lsde2015

Pig query plan

Load Visits

Group by url

Foreach url
generate count

Load Url Info

Join on url

Group by category

Foreach category
generate top10(urls)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Map1

Reduce1 Map2

event.cwi.nl/lsde2015

Where does Hadoop go?

OLTP OLAP

ETL
(Extract, Transform, and Load)

event.cwi.nl/lsde2015

A major step backwards?

• MapReduce is a step backward in database access

– Schemas are good

– Separation of the schema from the application is good

– High-level access languages are good

• MapReduce is poor implementation

– Brute force and only brute force (no indexes, for example)

• MapReduce is not novel

• MapReduce is missing features

– Bulk loader, indexing, updates, transactions…

• MapReduce is incompatible with DMBS tools

Source: Blog post by DeWitt and Stonebraker

event.cwi.nl/lsde2015

Known and unknown unknowns

• Databases only help if you know what questions to ask

– “Known unknowns”

• What’s if you don’t know what you’re looking for?

– “Unknown unknowns”

event.cwi.nl/lsde2015

Big Data Pipeline

OLTP OLAP

ETL
(Extract, Transform, and Load)

Hadoop

event.cwi.nl/lsde2015

ETL: redux

• Often, with noisy datasets, ETL is the analysis!

• Note that ETL necessarily involves brute force data scans

• L, then E and T?

event.cwi.nl/lsde2015

Projection in MapReduce

R1

R2

R3

R4

R5

R1

R2

R3

R4

R5

Can we do better than brute force?

event.cwi.nl/lsde2015

Selection in MapReduce

R1

R2

R3

R4

R5

R1

R3

Can we do better than brute force?

event.cwi.nl/lsde2015

Relational joins in MapReduce

R1

R2

R3

R4

S1

S2

S3

S4

R1 S2

R2 S4

R3 S1

R4 S3
Query optimizers to the rescue!

event.cwi.nl/lsde2015

Relational databases vs. MapReduce

• Relational databases:

– Multipurpose: analysis and transactions; batch and interactive

– Data integrity via ACID transactions

– Lots of tools in software ecosystem (for ingesting, reporting, etc.)

– Supports SQL (and SQL integration, e.g., JDBC)

– Automatic SQL query optimization

• MapReduce (Hadoop):

– Designed for large clusters, fault tolerant

– Data is accessed in “native format”

– Supports many query languages

– Programmers retain control over performance

– Open source

Source: O’Reilly Blog post by Joseph Hellerstein (11/19/2008)

event.cwi.nl/lsde2015

Philosophical differences

• Parallel relational databases

– Schema on write

– Failures are relatively infrequent

– “Possessive” of data

– Mostly proprietary

• MapReduce

– Schema on read

– Failures are relatively common

– In situ data processing

– Open source

event.cwi.nl/lsde2015

Summary

• How we got here: the historical perspective

• MapReduce algorithms for processing relational data

• Evolving roles of relational databases and MapReduce

